مدل ریاضی چندهدفه برای مدیریت زنجیره تامین یکپارچه مستقیم و معکوس پایدار سیب درختی با در نظرگرفتن بازارهای خارجی میوه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مدیریت، دانشکده اقتصاد و مدیریت، دانشگاه تبریز، تبریز، ایران.

2 دانشجوی کارشناسی ارشد مدیریت کسب و کار، دانشگاه تبریز، تبریز، ایران.

3 استادیار گروه مهندسی صنایع، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران.

10.22034/jiba.2020.10384

چکیده

با افزایش جمعیت و رشد گسترده مصرف در سرتاسر جهان، شبکه‌های زنجیره تامین به شبکه‌های بسیار بزرگی تغییر کرده‌اند و اجزای مربوط به این شبکه های عظیم سبب ایجاد مشکلات جدی زیست‌محیطی شده‌اند. مدیریت زنجیره تامین پایدار در زمره مفاهیم نوظهور در عرصه تولید و عملیات است. شرکت‌ها باید با بکارگیری زنجیره تامین پایدار نسبت به بهبود عملکرد زیست‌محیطی و اجتماعی در کنار عملکرد اقتصادی اهتمام ورزند. مکانیزم‌های مختلفی نیاز است تا ضایعات را کاهش دهد یا بتواند از اقلام فاسد شده بهره‌برداری کند. در این میان توجه به لجستیک معکوس و زنجیره تامین حلقه بسته می‌تواند کمک کننده باشد. این موضوع در زنجیره تامین محصولات کشاورزی کمتر مطرح شده‌است. مقاله حاضر، یک مدل برنامه‌ریزی خطی عدد صحیح چندهدفه و چند دوره‌ای برای بهینه‌سازی یک شبکه لجستیک یکپارچه مستقیم و معکوس میوه سیب، شامل سه سطح (باغ‌ها، مراکز توزیع و مناطق مشتریان داخلی و خارجی) در جریان مستقیم و دو سطح (مراکز کمپوستینگ و بازار کمپوست) در جریان معکوس، توسعه می‌دهد و حل می‌کند. به طوری که تمام جنبه‌های انتشار کربن دی اکسید در کل شبکه زنجیره تامین پیشنهادی را در نظر می‌گیرد و یک تعادل منصفانه و معقول بین اهداف اقتصادی، اجتماعی و محیط زیستی برقرار می‌نماید.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Multi-Objective Mathematical Model For Managing Sustainable Direct and Reverse Supply Chain of Apple Considering Foreign Markets

نویسندگان [English]

  • Younis Jabarzadeh 1
  • Hossein Reyhani Yamchi 2
  • Nader Ghaffarinasab 3
1 Department of Management, Faculty of Economics and Management, University of Tabriz, Tabriz, Iran
2 Department of Management, Faculty of Economics and Management, University of Tabriz, Tabriz, Iran
3 Department of Industrial Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Regarding the growing population and widespread consumption growth around the world, supply chain networks have changed to extensive networks, but the components of these networks have made severe environmental problems. Sustainable supply chain management is one of the emerging concepts in production and operations which improves environmental and social performance as well as economic performance. Hence, manufacturers should strive to employ it. Considering the reverse logistics and closed-loop supply chain can be practicable to reduce waste or to exploit corrupted items. This issue is less discussed in the agricultural supply chain. The present paper develops and solves a multi-objective and multi-period linear integer programming model for optimizing aggregate forward and reverse apple logistics network. It consists of three levels (gardens, distribution centers, and internal and external customer areas) in forward flow and two levels (composting centers and the compost markets) in reverse flow. The model also considers all aspects of carbon dioxide emissions throughout the entire supply chain network and proposes a fair and reasonable balance between economic, social, and environmental goals.

کلیدواژه‌ها [English]

  • Reverse logistic
  • closed-loop supply chain
  • multi-objective optimization
  • export markets of agricultural products
برادران، وحید، و صفری، زهرا (۱۳۹۸). یک مدل مکان یابی دو هدفه برای طراحی شبکه زنجیره تامین حلقه بسته تحت شرایط عدم قطعیت. فصلنامه مطالعات مدیریت صنعتی، ۱۷(۵۴)، ۲۲۳-۲۶۲.
حاجیان، سیما، افشارکاظمی، محمدعلی، سیدحسینی، سید محمد، و طلوعی اشلقی، عباس (1398). ارائه مدل چندهدفه برای مسئله مکان‌یابی- مسیریابی- موجودی در شبکه زنجیره‌تامین حلقه بسته چند دوره‌ای و چندمحصولی برای کالاهای فاسدشدنی. مدیریت صنعتی، 11(1)، 83-110.
درویشی, فاطمه, و قاسمی یقین, رضا (1397). خرید جهانی در زنجیره عرضه پوشاک: یک رویکرد یکپارچه تصمیم‌گیری چندمعیاره فازی-گروهی. علوم و فناوری نساجی، 7(3)،  5-18.
رحمانی, مینا, سازور, زینب, و بزرگی امیری, علی (1398). ارائه‌ی یک مدل ریاضی سه‌هدفه برای برنامه‌ریزی پایدار زنجیره‌ی تأمین مواد کشاورزی زوال‌پذیر. مهندسی صنایع و مدیریت،  (1.2)35.1، 25-38.
زادجعفر, محدثه السادات، و غلامیان، محمدرضا (۱۳۹۷)، مروری بر مدل‌های موجودی با رویکرد پایداری در زنجیره تامین. مدیریت زنجیره تامین، 20(59)، 4-17.
شوال‌پور، سعید، اسدی، مونا، و قادری، حمید (۱۳۹۷). مدل بهینه یابی برای طراحی زنجیره تامین سوخت زیستی. نشریه انرژی ایران، ۲۱(۶۵)، ۱۲۳-۱۴۲.    
 
Ahumada, O., & Rene Villalobos, J. (2009). Application of planning models in the agri-food supply chain: a review. European Journal of Operational Research, 195, 1–20.
Amin, S. H., & Zhang, G. (2013). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling, (37)6, 4165–4176.
Amorim, P., Günther, H. O., & Almada-Lobo, B. (2012). Multi-objective integrated production and distribution planning of perishable products. International Journal of Production Economics, 138, 89–101.
Azaron, A., Venkatadri, U., Farhang Doost, A. (2019). Designing Profitable and Responsive Supply Chains under Uncertainty. IFAC-PapersOnLine, 52(13), 2816-2820.
Banasik, A., Kanellopoulos, A., Claassen, G. D. H., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. (2017). Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain. International Journal of Production Economics, (183), 409-420.
Carter, C. R., & Rogers, D. R. (2008). A framework of sustainable supply chain management: moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360-387.
Cheraghalipour, A., Paydar, M. M., & Hajiaghaei-Keshteli, M. (2018). A Bi-objective Optimization for Citrus Closed-Loop Supply Chain Using Pareto-Based Algorithms. Applied Soft Computing, 69, 33-59.
Dehghanian, F., & Mansour, S. (2009). Designing sustainable recovery network of end-of-life products using genetic algorithm. Resources, conservation and recycling, 53, 559-70.
Eriksson, M., & Spångberg, J. (2017), "Carbon footprint and energy use of food waste management options for fresh fruit and vegetables from supermarkets", Waste Management, Vol. 60, pp. 786-799.
Etemadnia, H., Goetz, S. J., Canning, P., & Tavallali, M. S. (2015). Optimal wholesale facilities location within the fruit and vegetables supply chain with bimodal transportation options: An LP-MIP heuristic approach. European Journal of Operational Research, 244, 648–661.
FAO, 2011. Global food losses and food waste- extent,causes and prevention. SAVE FOOD an Initiat. Food Loss Waste Reduct. 37. https://doi.org/10.1098/rstb.2010. 0126.
FAOStat (2017), http://www.fao.org/faostat/en/#rankings/commodities_by_country_exports.    Accessed 1 January 2020.
FAO, (2015), "Food Wastage Footprint & Climate Change", UN FAO, Rome.
Ghaffarinasab, N., Motallebzadeh, A., Jabarzadeh, Y., Y. Kara, B. (2018). Efficient simulated annealing based solution approaches to the competitive single and multiple allocation hub location problems. Computers & Operations Research, 90, 173-192.
Gobel, C., Langen, N., Blumenthal, A., Teitscheid, P., Ritter, G., Gobel, C., Langen, N., Blumenthal, A., Teitscheid, P., Ritter, G., 2015. Cutting food waste through cooperation along the food supply chain. Sustainability 7, 1429e1445. https:// doi.org/10.3390/su7021429.
Goh, M., Lim, J. Y., & Meng, F. (2007). A stochastic model for risk management in global supply chain networks. European Journal of Operational Research, 182(1), 164-173.
Hobbs, S., Morton, E., Barclay, N., & Landis, A. (2018). Sustainability Approach: Food Waste-to-Energy Solutions for Small Rural Developing Communities. The International Journal of Environmental, Cultural, Economic, and Social Sustainability: Annual Review, 13, 21-37.
Hodder, J. E., & Jucker, J. V. (1985). International plant location under price and exchange rate uncertainty. Engineering Costs and Production Economics, 9(1), 225-229.
Krikke, H., Hofenk, D. and Wang, Y., 2013. Revealing an invisible giant: A comprehensive survey into return practices within original (closed-loop) supply chains. Resources, Conservation and Recycling, 73, pp.239-250.
Madoumier, M., Trystram, G., Sébastian, P., Collignan, A. (2019). Towards a holistic approach for multi-objective optimization of food processes: A critical review. Trends in Food Science & Technology, 86, 1-15.
Nadal-Roig, E., & Plà-Aragonés, L. M. (2015). Optimal Transport Planning for the Supply to a Fruit Logistic Centre. In Plà-Aragonés, L. (eds). Handbook of Operations Research in Agriculture and the Agri-Food Industry (vol. 224, pp. 163-177). New York, NY: Springer.
Nurjanni, K. P., Carvalho, M., & Costa, L. (2017), "Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model", International Journal of Production Economics, Vol. 183, Part B, pp. 421-432.
Paksoy, T., Özceylan, E., & Weber, G. W. (2010). A multi objective model for optimization of a green supply chain network. AIP Conference Proceedings, 311.
Rittmann, Bruce E., and P. L. McCarty. 2001. Environmental Biotechnology: Principles and Applications. New York: McGraw-Hill Book Co.
Romero, C. (2000). Risk programing for agricultural resource allocation: a multidimensional risk approach, Ann. Operations Research, 94, 57–68.
Sarker, R., & Ray, T. (2009). An improved evolutionary algorithm for solving multiobjective crop planning models. Computers and Electronics in Agriculture, 68, 191-199.
Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710.
Stock, J. R., Mulki J. P. (2009). PRODUCT RETURNS PROCESSING: AN EXAMINATION OF PRACTICES OF MANUFACTURERS, WHOLESALERS/DISTRIBUTORS, AND RETAILERS. Journal of Business Logistics, 30, 33-62.
Soto-Silva, W. E., Nadal-Roig, E., González-Araya, M. C., & Pla-Aragones, L. M. (2016). Operational research models applied to the fresh fruit supply chain. European Journal of Operational Research, (251)2, 345–355.
Syam, S. S. (1997). A model for the capacitated p-facility location problem in global environments. Computers & operations research, 24(11), 1005-1016.
Velychko, O. (2014). Integrated Modeling of Solutions in the System of Distributing Logistics of a Fruit and Vegetable Cooperative. Business: Theory and Practice, 15, 362–370.
Verdouw, C. N., Beulens, A. J. M., Trienekens, J. H., & Wolfert, J. (2010). Process modelling in demand-driven supply: A reference model for the fruit industry. Computers and Electronics in Agriculture, 73, 174–187.
Zhang, Y., Chu, F., Che, A., Yu, Y., & Feng, X. (2019). Novel model and kernel search heuristic for multi-period closed-loop food supply chain planning with returnable transport items. International Journal of Production Research, 57(23), 7439-7456.