عوامل موثر بر افزایش نرخ کلیک و اعتمادپذیری کاربران در تبلیغات شخصی شده آنلاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده علوم ارتباطات دانشگاه علامه طباطبایی

2 دانشجوی کارشناسی ارشد، مدیریت جهانگردی ، گرایش مدیریت بازاریابی گردشگری دانشگاه پیام نور کرج

10.22034/jiba.2021.42588.1547

چکیده

بازاریابی داده‌محور به عنوان استراتژی مطالعه روی رفتار مشتریان با تکیه بر تحلیل کلان‌داده‌ها، به پیش‌بینی رفتارهای آنان و افزایش نرخ بازگشت سرمایه کمک خواهد کرد. بسیاری از ایرانیان به ویژه جوانان از کاربران شبکه‌های اجتماعی و سایت‌های اینترنتی به شمار می‌روند و در معرض تبلیغات این شبکه‌ها قرار می‌گیرند. در پژوهش حاضر با روش پیمایشی و با نمونه‌گیری در دسترس و گلوله‌برفی، ۴۴۶ نفر از دانشجویان دانشگاه‌های تهران و نزدیکان آن‌ها که کاربر شبکه اجتماعی اینستاگرام هستند مورد بررسی قرار گرفتند. به این منظور از الگوی مفهومی مبتنی بر نظر مصرف‌کنندگان در خصوص عوامل اصلی تأثیرگذار بر افزایش کلیک در تبلیغات‌ آنلاین شخصی‌شده استفاده شده است. یافته‌های تحقیق حکایت از آن دارد که تصمیم مصرف‌کننده برای کلیک روی تبلیغ با توجه به متغیرهایی چون آشنایی قبلی با برند، جذابیت بصری، درگیری ذهنی با محصول و کیفیت اطلاعات برای مصرف‌کننده گرفته می‌شود. از این رو، اعتماد در فرآیندهای جذابیت بصری و کیفیت اطلاعات نقش واسطه‌ای را ایفا می‌کند و در اراده و تصمیم کاربران به کلیک روی تبلیغ اثرگذار است. رعایت حریم خصوصی و نگرانی ‌مصرف‌کننده در خصوص عدم رعایت این حریم موجب می‌شود درگیری ذهنی درباره محصول افزایش یابد و از میزان اعتماد و تصمیم مصرف‌کننده به کلیک بکاهد. بر اساس نتایج پژوهش، تبلیغات شخصی‌شده دقیق هر چند اهداف بالاتری را در نظر داشته باشد اما ممکن است روی نگرانی مصرف‌کننده از حریم خصوصی اثر منفی بگذارد و به تضعیف اهداف خود منجر شود.
واژگان کلیدی: تبلیغات آنلاین شخصی‌شده، بازاریابی داده‌محور، شبکه‌های اجتماعی، مشتری
طبقه بندی M37, M31:JEL

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Factors affecting the increase of click-through rate and users' trust in personalized online advertisements

نویسندگان [English]

  • Ali AHMADI 1
  • Davood AHMADI 2
1 Atu University; Communication Sciences Faculty
2 Tourism Management; Karaj Payame Noor University,
چکیده [English]

Data-driven marketing as a strategy for studying customer behavior based on metadata analysis will help to predict their behavior and increase the rate of return on investment. Many Iranians, especially young people, are users of various social networks and Internet sites and are exposed to advertisements on these networks. In the present study, 446 students of Tehran universities and their relatives who are users of the Instagram social network were surveyed based on the survey method and the available sampling method and snowball. For this purpose, a conceptual model based on consumer opinion has been used regarding the main factors influencing the increase of clicks in personalized online advertising. The research findings indicate that the consumer decision to click on the ad is made based on variables such as previous familiarity with the brand, visual appeal, mental engagement with the product and the quality of information for the consumer. Hence, trust in the processes of visual appeal and information quality plays a mediating role and therefore affects the will and decision of users to click on the ad. Privacy and the consumer's concern about non-compliance will increase his mental involvement about the product and reduce the consumer's confidence and decision to click. According to the research results, although accurately personalized advertising has higher goals in mind, it may negatively affect consumer privacy concerns and in fact lead to the weakening of their goals.
Keywords:Personalized online advertising, data-driven marketing, social media, customer
Classification JEL: M31, M37

کلیدواژه‌ها [English]

  • Personalized online advertising
  • data-driven marketing
  • social media
  • customer
اعظمی، محسن. آزادی، وحید و آینه، معصومه (1397). بررسی تأثیر فعالیت‌های بازاریابی رسانه‌های اجتماعی درک شده بر قصد خرید ‌مصرف‌کننده. انجمن جامعه شناسی آموزش و پرورش ایران، (۷) :۱۸۱-۱۹۷.
ایرنا (1399)، رشد ۲۸۴ درصدی خریدهای اینترنتی پس از شیوع کرونا، http://www.irna.ir/news/84068427/ بازیابی: 3 آبان 1399
ببی، ارل (1384). روش‍های تحقیق در علوم اجتماعی (جلد دوم). ترجمه رضا فاضل، تهران: سمت.
تیموری، هادی. گودرزوند چگینی، مریم و غایبی سدهی، حامد (1395). بررسی عوامل موثر بر فرایند شکل‌گیری وفاداری الکترونیکی مشتریان در فروشگاه‌های الکترونیکی ایران. مدیریت بازرگانی، 8 (2)، 281-300.
خالقی، عاطفه. معینی، حسین و جامی‌پور، مونا (1398). شناسایی و رتبه‌بندی فرصت‌ها و چالش‌های بازاریابی رسانه‌های اجتماعی. بازاریابی نوین، 1 (32), 88-69.
راه‌پیما، امان‌الله. سبحانی، سیدمجتبی (1398). آیا بازاریابی رسانه های اجتماعی می‌تواند قابلیت‌های ارتباط با مشتری و عملکرد شرکت را بهبود بخشد. پنجمین همایش بین المللی مدیریت، روانشناسی و علوم انسانی با رویکرد توسعه پایدار، 1-9.
رحیمی اقدم، صمد. فضل زاده، علیرضا و ابراهیمی اقدم، نوشین. (1399). تأثیر استراتژی‌های تضمین بر قصد خرید اینترنتی با میانجی‌گری اعتماد در فروشگاه‌های آنلاین. مطالعات مدیریت کسب و کار هوشمند، 8(32), 117-146.
روشند‌ل‌اربطانی، طاهر. محمودزاده، احد (1396). طراحی مدل تبلیغات از طریق رسانه های اجتماعی به منظور تأثیر بر تمایل مشتریان. مدیریت بازرگانی، 786-763.
عندلیب، اعظم و خزانه‌دارلو، مرتضی (1395). نقش رسانه‌های اجتماعی آنلاین در بهبود استراتژی‌های بازاریابی. دومین کنفرانس بین المللی وب‌پژوهی - دانشگاه علم و فرهنگ ، 7-1.
فرگوسن، چارلز (1391). نظریه اقتصاد خرد، ترجمه محمد روزبهان، تهران: مرکز نشر دانشگاهی
کوششی، محمدرضا. عالی، صمد. بافنده زنده، علیرضا و ایران زاده، سلیمان. (1399). پیش‌آمدها و پیامدهای کیفیت رابطه آنلاین در خریدهای اینترنتی. مطالعات مدیریت کسب و کار هوشمند، 8(31).
ممدوحی، امیررضا. ماهپور، علیرضا. رشیدی طه، حسین و  صفارزاده، محمود (1395). شناسایی عوامـل فـردی مـؤثر در جـذب مشتریان به مراکز خرید (مطالعة موردی: شهر تهران). کنفـرانس بـین‌المللـی مـدیریت، تهـران: دانشگاه شهید بهشتی. 
 
Aguirre, E. D. Mahr, D. Grewal, K. de Ruyter, M. WetzelsUnraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. Journal of Retailing, 91 (1) (2015), pp. 34-49
AkhterShareef, M., BhaskerMukerji, & K.Dwivedi, Y. (2019). Social media marketing: Comparative effect of advertisement sources. Journal of Retailing and Consumer Services, 69-58.
Arli, D., Bauer, C., & Palmatier, R. W. (2018). Relational selling: Past, present and future. Industrial Marketing Management, 69, 169-184.
Beauvisage, T, Mellet, K (2019) Mobile consumers and the retail industry: The resistible advent of a new marketing scene. Journal of Cultural Economy 13(1): 1–17.
A.Bleier, M. Eisenbeiss (2015). Personalized online advertising effectiveness: The interplay of what, when, and where Marketing Science, 34 (5), pp. 669-688
Changbao, L., & Peishan, H. (2018). A Literature Review of the Consumer Cognitive Miserliness Behavior and Its Marketing Implications: Based on the Framework of the Cue Utilization Theory. Foreign Economics & Management. 58-70.
Cioffi, R. (2019). Data-driven marketing: Strategies, metrics and infrastructures to optimize the marketing performances. Politecnico di Torino. 83-1
Datareportal (2020), DIGITAL 2020: JULY GLOBAL STATSHOT, https://datareportal.com/reports/digital-2020-july-global-statshot
Dodds, W. B., Monroe, K. B. & Grewal, D. (1991). Effects of price, brand and store information on buyers’ product evaluation. Journal of Marketing Research, 28(3), 307-319.
Dolan, R., Conduit, J., & Frethey-Bentham, C. (2019). Social media engagement behavior: A framework for engaging customers through social media content. European Journal of Marketing. 2243-2213
Facebook (2020). Keeping Our Services Stable and Reliable During the COVID-19 Outbreak.  https://about.fb.com/news/2020/03/keeping-our-apps-stable-during-covid-19/: 24 march 2020.
Homer, P. M. (2008). Perceived quality and image: When all is not “rosy”. Journal of Business Research, 61, 715-723.
Idemudia, E.C. D.R. JonesAn empirical investigation of online banner ads in online market places: The cognitive factors that influence intention to click. International Journal of Information Systems and Management, 1 (3) (2015), pp. 264-293.
Johnson, D., Sihi, D., Muzelle, L., & Zahay, D. (2019). The marketing organization’s journey to become data-driven. Journal of Research in Interactive Marketing. 162-178.
Jung, A. R. (2017). The influence of perceived ad relevance on social media advertising: An empirical examination of a mediating role of privacy concern. Computers in Human Behavior, 70, 303-309.
Kukar-Kinney, M., & Xia, L. (2017). The effectiveness of number of deals purchased in influencing consumers' response to daily deal promotions: A cue utilization approach. Journal of Business Research, 79, 189-197.
F. Kehr, T. Kowatsch, D. Wentzel, E. FleischBlissfully ignorant: The effects of general privacy concerns, general institutional trust, and affect in the privacy calculus. Information Systems Journal, 25 (6) (2015), pp. 607-635
Kwon, S., Ha, S., & Kowal, C. (2017). How online self-customization creates identification: Antecedents and consequences of consumer-customized product identification and the role of product involvement. Computers in Human Behavior, 75, 1-13.
Lytras, M. D., Raghavan, V., & Damiani, E. (2017). Big Data and Data Analytics Research: From Metaphors to Value Space for Collective Wisdom in Human Decision Making and Smart Machines. International Journal on Semantic Web and Information Systems, 13(1), 1-10.
Mazeed, S. A. & Reddy, R. S. (2017). Role of social media in online marketing. National Conference on Marketing and Sustainable Development, 260-265.
Mitra, D. & Golder, P. N. (2006). How does objective quality affect perceived quality? Short-term effects, long-term effects and asymmetries. Marketing Science, 25(3), 230-247.
Mohan, M., Brown, B. P., Sichtmann, C., & Schoefer, K. (2018). Perceived globalness and localness in B2B brands: A co-branding perspective. Industrial Marketing Management, 72, 59-70.
Nazarov. A.D. (2019). Big Data Driven Marketing. Advances in Economics, Business and Management Research, 15-12.
Oliveira, T., Alhinho, M., Rita, P., & Dhillon, G. (2017). Modelling and testing consumer trust dimensions in e-commerce. Computers in Human Behavior, 71, 153-164.
Olson, J. (1972). Cue utilisation in the quality perception process: A cognitive model and an empirical test. Doctoral dissertation, Purdue University.
Rao, A. R. & Monroe, K. B. (1988). The moderating effect of prior knowledge on cue utilization in product evaluations. Journal of Consumer Research, 15, 253-264.
Reuters. (2019), Twitter says it may have used user data for ads without permission in https://www.reuters.com/article/us-twitter-data-idUSKCN1UX02O
Selnes, F. (1993). An examination of the effect of product performance on brand reputation, satisfaction and loyalty. European Journal of Marketing, 27(9), 19-35.
Su, X., Xu, A., & Huang, L. (2019). Customer Experience and Continual Usage Willingness of Fresh Products APPs: Based on the Framework of the Cue Utilization Theory. 2019 International Conference on Industrial Engineering and Systems Management (IESM), 45-1.
S. Zhao, J. MaResearch on precision marketing data source system based on big data. International Journal of Advanced Media and Communication, 7 (2) (2017), pp. 93-100.
Teas, R. K., & Agarwal, D. (2000). The effects of extrinsic product cues on consumers’ perceptions of quality, sacrifice, and value. Journal of the Academy of Marketing Science, 28(2), 278-290.
Walrave, M., Poels, K., Antheunis, M. L., Van den Broeck, E., & van Noort, G. (2018). Like or dislike? Adolescents’ responses to personalized social network site advertising. Journal of Marketing Communications, 24(6), 599-616.
Wang, Z., & Kim, H. G. (2017). Can Social Media Marketing Improve Customer Relationship Capabilities and Firm Performance? Dynamic Capability Perspective. Journal of Interactive Marketing, 26-15.
Yanes, P. A., & Berger, P. D. (2017). How WeChat has changed the face of marketing in China. British Journal of Marketing Studies, 5(3), 14-21.
Yerimpasheva, A. T., & Balgabayeva, Z. B. (2020). Data-driven marketing as a part of a business strategy of Kazakhstani franchise companies. Economic and Societal Development, 333-347.
Yu, C., Zhang, Z., Lin, C., & Wud, Y. J. (2019). Can data-driven precision marketing promote user ad clicks? Evidence from advertising in WeChat moments. Industrial Marketing Management, 1-19.
Zarouali, B., Poels, K., Walrave, M., & Ponnet, K. (2018). The impact of regulatory focus on adolescents’ evaluation of targeted advertising on social networking sites. International Journal of Advertising, DOI: 10.1080/02650487.2017.141941.
Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. Journal of Marketing, 52, 2-22.